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Background——Why

Theory: Up to now, some quantum algorithms have been come
up with and have shown strong computing power.

quantum algorithm problem speed up
Shor algorithm factorization exponential
Grover algorithm searching quadratic
HHL algorithm linear system of equations exponential

...... ...... ......

Application: Several corporations have set up quantum
computing labs to remain competitive.
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Background——What

Definition: Quantum computing is the use of quantum
mechanical phenomena such as superposition and entanglement
to perform computation.

Take 1-(qu)bit operation as an example to have a glance at
quantum computation.
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Course arrangement

Introduction to quantum computation (2, 4)
Quantum mechanics under algebra
Quantum circuit

Shor algorithm (5)
Quantum Fourier Transformation
Phase estimation
Order finding

Grover algorithm (6)
Amplitude amplification
Quantum counting

Please refer to ”Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2000.”
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Dirac notation

The standard quantum mechanical notationquantum mechanical notation for a vector
in a vector space is |ψ⟩.
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Bases

Def 1. A set of non-zero vectors

|v1⟩, · · · , |vn⟩, (1)

is a basis for the vector space V, if there exists a set of complex
numbers a1, · · · , an with ai ̸= 0 for at least one value of i, such that
a1|v1⟩+ · · ·+ an|vn⟩ = 0.

Take C2 as an example, its two common bases are

|0⟩ ,
[
1
0

]
, |1⟩ ,

[
0
1

]
(2)

|+⟩ , 1√
2

[
1
1

]
, |−⟩ , 1√

2

[
1
−1

]
(3)
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Vector——Inner product

Def 2. A function (·, ·) from V× V to C is an inner product if it
satisfies the requirements that:

(·, ·) is linear in the second argument, i.e.,

(|ν⟩,
∑
i
λi|ωi⟩) =

∑
i
λi(|ν⟩, |ωi⟩)

(|ν⟩, |ω⟩) = (|ω⟩, |ν⟩)∗

(|ν⟩, |ν⟩) ≥ 0 with equality if and only if |ν⟩ = 0.

Notations:
We call a vector space equipped with an inner product an inner product space.
In the finite dimensional complex vector spaces that come up in QCQI, a
Hilbert space is exactly the same thing as an inner product space.
In the following, we prefer the term Hilbert space.



Course overview Quantum mechanics under algebra Quantum circuit

Vector——Inner product

Def 2. A function (·, ·) from V× V to C is an inner product if it
satisfies the requirements that:

(·, ·) is linear in the second argument, i.e.,

(|ν⟩,
∑
i
λi|ωi⟩) =

∑
i
λi(|ν⟩, |ωi⟩)

(|ν⟩, |ω⟩) = (|ω⟩, |ν⟩)∗

(|ν⟩, |ν⟩) ≥ 0 with equality if and only if |ν⟩ = 0.

Notations:
We call a vector space equipped with an inner product an inner product space.
In the finite dimensional complex vector spaces that come up in QCQI, a
Hilbert space is exactly the same thing as an inner product space.
In the following, we prefer the term Hilbert space.



Course overview Quantum mechanics under algebra Quantum circuit

Orthogonal: Vectors |ω⟩ and |ν⟩ are orthogonal, if their inner
product is zero, that is, (|ν⟩, |ω⟩) = ⟨ν|ω⟩ = 0.

Norm: ∥|ν⟩∥ ≡
√

⟨ν|ν⟩.
Normalized: If ∥|ν⟩∥ = 1, then we say |ν⟩ is normalized.

Suppose |ω1⟩, · · · , |ωd⟩ is a basis for some vector space V, then we
can use inner product to produce an orthonormal basis through the
Gram-Schmidt procedure.

1 Define |ν1⟩ ≡ |ω1⟩/∥ω1∥,
2 for 1 ≤ k ≤ d− 1, define

|νk+1⟩ ≡
|ωk+1⟩ −

∑k
i=1⟨νi|ωk+1⟩|νi⟩

∥|ωk+1⟩ −
∑k

i=1⟨νi|ωk+1⟩|νi⟩∥
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Vector——Outer product

Outer product is a useful way of representing linear operators.

Def 3. Suppose |ν⟩ is a vector in V and |ω⟩ is a vector inW, then
|ω⟩⟨ν| is the linear operator from V toW, whose action is defined by

(|ω⟩⟨ν|)(|ν ′⟩) ≡ |ω⟩⟨ν|ν ′⟩ = ⟨ν|ν ′⟩|ω⟩

Explanations:
the result when the operator |ω⟩⟨ν| acts on |ν ′⟩
the result of multiplying |ω⟩ by the complex number ⟨ν|ν ′⟩
Indeed, we define the former in terms of the latter.
Let |i⟩ be any orthonormal basis for some V, then

∑
i |i⟩⟨i| = I

(Completeness relation).
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Vector——Tensor product

Tensor product is a way of putting vector spaces together to form
larger vector spaces, i.e., composite systems. This construction is
crucial to understanding the quantum mechanics of multiparticle
systems.

Def 4. Suppose V andW are Hilbert spaces of dimension m and n
respectively, then V⊗W is an mn dimensional Hilbert space, and the
elements are linear combinations of tensor products |ν⟩ ⊗ |ω⟩.

Properties:
z(|ν⟩ ⊗ |ω⟩) = z(|ν⟩)⊗ |ω⟩ = |ν⟩ ⊗ (z|ω⟩)
(|ν1⟩+ |ν2⟩)⊗ |ω⟩ = |ν1⟩ ⊗ |ω⟩+ |ν2⟩ ⊗ |ω⟩
|ν⟩ ⊗ |ω⟩ ≡ |νω⟩ (for short)
|ψ⟩⊗k (tensored with itself k times)
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Operator

Def 5. A linear operator between V andW is defined to be any
function A:

A(
∑
i
ai|νi⟩) =

∑
i
aiA(|νi⟩).

Eg. Pauli matrices:
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The outer product representation of Pauli matrices:
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Operator——Eigenvectors and Eigenvalues

Def 6. An eigenvector of a linear operator A on V is a non-zero
vector |ν⟩ such that A|ν⟩ = ν|ν⟩, where ν is a complex number
known as the eigenvalue of A corresponding to |ν⟩.

(Eigendecomposition of the Pauli matrices) Find the eigenvectors,
eigenvalues, and diagonal representations of the Pauli matrices X,Y
and Z.
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Several specific operators

Suppose A is any linear operator on a Hilbert space V, then there exists
a unique linear operator A† on V such that for all vectors |ν⟩, |ω⟩ ∈ V,

(|ν⟩,A|ω⟩) = (A†|ν⟩, |ω⟩),

we call this linear operator the adjoint or Hermitian conjugate of the
operator A.

1 Hermitian operator: A† = A.

2 projector: P ≡
∑k

i=0 |i⟩⟨i|.
3 normal operator: AA† = A†A.
4 unitary: UU† = U†U = I.
5 positive operator: (|ν⟩,A|ν⟩) ≥ 0,∀|ν⟩.

positive definite operator: (|ν⟩,A|ν⟩) > 0,∀|ν⟩ ̸= 0.

6 density operator: Tr(A) = 1 and positive operator
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The relationship among different operators is as follows.
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Two important theorems are “the spectral decomposition” and
“simultaneous diagonalization theorem”.

Spectral decomposition: Any normal operator M on a vector space
V is diagonal with respect to some orthonormal basis for V.
Conversely, any diagonalizable operator is normal.
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The commutator between two operators A and B is defined to be
[A,B] ≡ AB− BA. Similarly, the anti-commutator between two
operators A and B is defined to be {A,B} ≡ AB+ BA.

Simultaneous diagonalization theorem: Suppose A and B are
Hermitian operations. Then [A,B] = 0 if and only if there exists an
orthonormal basis such that both A and B are diagonal with respect to
that basis. We say that A and B are simultaneously diagonalized in
this case.
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Postulates of quantum mechanics

origin: The postulates of quantum mechanics were derived after
a long process of trial and (mostly) error.
motivation: not always clear
expectation: how to apply them, and when

Postulate 1: Associated to any isolated physical system is a complex
vector space with inner product (that is, a Hilbert space) known as the
state space of system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.
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The simplest quantum mechanical system is the qubit. Suppose |0⟩
and |1⟩ form an orthonormal basis for this two-dimensional state
space, then an arbitrary state vector can be written

|ψ⟩ = a|0⟩+ b|1⟩,

where a, b are complex numbers, and |a|2 + |b|2 = 1.

Notations:
computational basis states: {|0⟩, |1⟩}
superposition: |ψ⟩ is a superposition of |0⟩ and |1⟩.
amplitude: a, b is the amplitude for |0⟩, |1⟩, respectively.
probability: |a|2 for measuring result is 0, and |b|2 for measuring
result is 1.
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Geometric representation for a qubit is as follows.



Course overview Quantum mechanics under algebra Quantum circuit

Some common used qubit states.
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Postulate 2: The evolution of a closed quantum system is described
by a unitary transformation. That is, the state |ψ⟩ of the system at time
t1 is related to the state |ψ′⟩ of the system at time t2 by a unitary
operator U which depends only on the times t1 and t2,

|ψ′⟩ = U|ψ⟩.

Notations:
closed: This system is not interacting in any way with other
systems.
Egs.:
bit flip: X
phase flip: Z
Hadamard gate: H
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Postulate 2′: The time evolution of a state of a closed quantum
system is described by the Schrodinger equation,

i~
d|ψ⟩
dt

= H|ψ⟩.

In this equation, ~ is a physical constant known as Plank’s constant
whose value must be experimentally determined. The exact value is
not important to us. In practice, it is common to absorb the factor ~
into H, effectively setting ~ = 1. H is a fixed Hermitian operator
known as the Hamiltonian of the closed system.

Think about the connection between this Hamiltonian and the above
unitary operator.
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Postulate 3: Quantum measurements are described by a collection
{Mm} of measurement operators. These are operators acting on the
state space of the system being measured. The index m refers to the
measurement outcomes that may occur in the experiment. If the state
of the quantum system is |ψ⟩ immediately before the measurement
then the probability that result m occurs is given by

p(m) = ⟨ψ|M†
mMm|ψ⟩,

and the state of the system after the measurement is

Mm|ψ⟩√
⟨ψ|M†

mMm|ψ⟩
.

The measurement operators satisfy the completeness equations,∑
m

M†
mMm = I.

Think about the connection between this Hamiltonian and the above
unitary operator.
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The measurement of a qubit in the computational basis is
{M0,M1}, where M0 = |0⟩⟨0|, M1 = |1⟩⟨1|.

Dfferent measurements act on a fixed qubit state.
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Three elementary but important measurement scenarios:
Distinguishing quantum states
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Projective measurements



Course overview Quantum mechanics under algebra Quantum circuit

POVM measurements

Eg: {|ψ1⟩ = |0⟩, |ψ2⟩ = |+⟩}



Course overview Quantum mechanics under algebra Quantum circuit

POVM measurements

Eg: {|ψ1⟩ = |0⟩, |ψ2⟩ = |+⟩}



Course overview Quantum mechanics under algebra Quantum circuit

Postulate 4: The state space of a composite physical system is the
tensor product of the state spaces of the component physical systems.
Moreover, if we have systems numbered 1 through n, and system
number i is prepared in the state |ψi⟩, then then joint state of the total
system is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

entangled state: it cannot be written as a product of states of its
component systems.
Bell states:
|Ψ00⟩ = 1√

2
(|00⟩+ |11⟩)

|Ψ01⟩ = (I⊗ Z)|Ψ00⟩ = 1√
2
(|00⟩ − |11⟩)

|Ψ10⟩ = (I⊗ X)|Ψ00⟩ = 1√
2
(|01⟩+ |10⟩)

|Ψ11⟩ = (I⊗ XZ)|Ψ00⟩ = 1√
2
(|01⟩ − |10⟩)
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Review the four postulates and try to place them in some kind of
global perspective.

Postulate 1 sets the area for quantum mechanics.
Postulate 2 tells the dynamics of closed quantum system.
Postulate 3 describes how to extract information from quantum
systems.
Postulate 4 shows how to combine different quantum systems to
generate a composite one.
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Single qubit operations

Operations on a qubit must preserve normalization, thus are described
by 2× 2 unitary matrices.
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Rotation operators about the x̂, ŷ and ẑ axes are defined as follows.
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An arbitrary unitary operator on a single qubit can be written as a
combination of rotations, together with global phase shifts.

(Z− Y decomposition for a single qubit)
Suppose U is a unitary operation on a single qubit. Then there exist
real numbers α, β, γ and δ such that

U = eiαRz(β)Ry(γ)Rz(δ).

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = eiαAXBXC, where α is some overall phase factor.
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Controlled operations

“If A is true, then do B”.

two input qubits, known as the control qubit and target qubit
|c⟩|t⟩ → |c⟩|t⊕ c⟩
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|c⟩|t⟩ → |c⟩Uc|t⟩
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how to implement the controlled-U operation for arbitrary single
qubit U, using only single qubit operations and the CNOT gate.
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Measurement

A final element used in quantum circuits.
We shall denote a projective measurement in the computational basis
using a ‘meter’ symbol.

Two principles:
Principle of deferred measurement
Measurements can always be moved from an intermediate stage of a quantum
circuit to the end of the circuit; if the measurement results are used at any stage
of the circuit then the classically controlled operations can be replaced by
conditional quantum operations.

Principle of implicit measurement
Without loss of generality, any unterminated quantum wires (qubits which are
not measured) at the end of a quantum circuit may be assumed to be measured.
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Quantum teleportation

Quantum teleportation is a technique for moving quantum states
around, even in the absence of a quantum communications channel
linking the sender of the quantum state to the recipient.

Setting:
Alice and Bob met long ago and generated an EPR pair, but now
live far apart with one qubit of the EPR pair.
Many years later, Bob is in hiding, and Alice’s mission is to
deliver a qubit |ψ⟩ to Bob.
Alice does not knowdoes not know the state of the qubit, and
moreover can only send classical information to Bob.

Alice can employ quantum teleportation as the way of sending |ψ⟩ to
Bob with only a small overhead of classical communication.
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where
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Principle of deferred measurement

Bob can “fix up” his state to recover |ψ⟩ according to the
measurement result.
faster than the speed of light?
create a copy?
EPR pair (entanglement) is a resource.
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Principle of deferred measurement

Bob can “fix up” his state to recover |ψ⟩ according to the
measurement result.
faster than the speed of light?
create a copy?
EPR pair (entanglement) is a resource.
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Universal quantum gates

A set of gates is said to be universal for quantum computation, if any
unitary operation may be approximated to arbitrary accuracy by a
quantum circuit involving only those gates.

Three universality constructions:
an arbitrary unitary operator may be expressed exactly as a
product of two-level unitary operators.
an arbitrary unitary operator may be expressed exactly using
single qubit and CNOT gates.
any unitary operation can be approximated to arbitrary accuracy
using Hadamard, phase, CNOT and π/8 gates.
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