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@ Theory: Up to now, some quantum algorithms have been come

up with and have shown strong computing power.

quantum algorithm problem speed up
Shor algorithm factorization exponential

Grover algorithm searching quadratic
HHL algorithm | linear system of equations | exponential
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@ Theory: Up to now, some quantum algorithms have been come
up with and have shown strong computing power.

quantum algorithm problem speed up
Shor algorithm factorization exponential
Grover algorithm searching quadratic
HHL algorithm | linear system of equations | exponential

@ Application: Several corporations have set up quantum
computing labs to remain competitive.
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Background——What

@ Definition: Quantum computing is the use of quantum
mechanical phenomena such as superposition and entanglement
to perform computation.
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Background——What

@ Definition: Quantum computing is the use of quantum
mechanical phenomena such as superposition and entanglement
to perform computation.

o Take 1-(qu)bit operation as an example to have a glance at
quantum computation.

Input Operation Output

Classical “NOT” 0 S |

Quantum “NOT” «a|0) + B|1) Xz(g(l)) al1) + B|0)

(superposition) (unitary) (measurement)
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Course arrangement

@ Introduction to quantum computation (2, 4)

e Quantum mechanics under algebra
e Quantum circuit

@ Shor algorithm  (5)
e Quantum Fourier Transformation
e Phase estimation
e Order finding

e Grover algorithm  (6)

e Amplitude amplification
e Quantum counting

Please refer to “"Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2000.”
IcptHeAis
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The standard quantum mechanical notationquantum mechanical notation for a vector
in a vector space is |1)).

Notation

Description

*

z

)
(]
(pl)
le) ® |4)
) )
A*
AT
AT

(ol Al)

Complex conjugate of the complex number z.
(I+a)=1—14

Vector. Also known as a ket.

Vector dual to |1)). Also known as a bra.

Inner product between the vectors |¢) and [¢).

Tensor product of |¢) and [¢)).

Abbreviated notation for tensor product of |¢) and |¢).
Complex conjugate of the A matrix.

Transpose of the A matrix.

Hermitian conjugate or adjoint of the A matrix, AT = (A7)

a b t [ a* ¢
calelEE]
Inner product between |@) and A|1)).
Equivalently, inner product between Af|p) and [¢).

*
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Bases

Def 1. A set of non-zero vectors

|V1>,"' a|vn>> (1)

is a basis for the vector space V, if there exists a set of complex
numbers ay, - - - , a, with a; # 0 for at least one value of i, such that
ai|vi) + -+ anlva) = 0.

Icpr#Hiais
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Bases

Def 1. A set of non-zero vectors
|V1>,'-- a|vn>> (1)

is a basis for the vector space V, if there exists a set of complex
numbers ay, - - - , a, with a; # 0 for at least one value of i, such that
ay|vi) + -+ ap|va) = 0.

Take C? as an example, its two common bases are

me|g]ma]}] @

w1 e L ®
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Vector Inner product

Def 2. A function (-, -) from V x V to C is an inner product if it
satisfies the requirements that:

@ (-,-) is linear in the second argument, i.e.,

(19 3 ) = 32 (o), )

fcp t e84
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Vector Inner product

Def 2. A function (-, -) from V x V to C is an inner product if it
satisfies the requirements that:

@ (-,-) is linear in the second argument, i.e.,

(19 3 ) = 32 (o), )

o (), |w)) = (lw) [¥))*
e (|v),|v)) > 0 with equality if and only if |v) = 0.

Notations:
@ We call a vector space equipped with an inner product an inner product space.

@ In the finite dimensional complex vector spaces that come up in QCQI, a
Hilbert space is exactly the same thing as an inner product space.

@ In the following, we prefer the term Hilbert space.
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@ Orthogonal: Vectors |w) and |v) are orthogonal, if their inner
product is zero, that is, (|v), |w)) = (v|w) = 0.

e Norm: |||v)|| = +/(v|v).

e Normalized: If |||v)|| = 1, then we say |v) is normalized.

@y t#eaia
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@ Orthogonal: Vectors |w) and |v) are orthogonal, if their inner
product is zero, that is, (|v), |w)) = (v|w) = 0.

e Norm: |||v)|| = +/(v|v).
e Normalized: If |||v)|| = 1, then we say |v) is normalized.
Suppose |w1), -, |wy) is a basis for some vector space V, then we

can use inner product to produce an orthonormal basis through the
Gram-Schmidt procedure.

@ Define |v1) = |wi)/|lwi]]
Q forl <k<d-—1,define

k
|wit1) i1 (Vilwrr1) [vi)

-
lees1) — Sy (wilwie 1))l

V1) =

fcp t e84
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The Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality is an important geometric fact about Hilbert
spaces. It states that for any two vectors [v) and |w), [(v|w)]* < (v|v){w|w). To
see this, use the Gram-Schmidt procedure to construct an orthonormal basis |¢)
for the vector space such that the first member of the basis |i) is |w)/+/(w|w).
Using the completeness relation Y, |¢)(i| = I, and dropping some non-negative
terms givés

3 wliilo) o)
(vl) wlo)
(wl)
= (ofu)wlv) = [(vlw)P,

(v|v) {w|w)

v

(wlw)

as required. A little thought shows that equality occurs if and only if |v) and |w)
are linearly related, |v) = z|w) or |w) = z|v), for some scalar 2.

@y t#eaia
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Vector Outer product

Outer product is a useful way of representing linear operators.

Def 3. Suppose |v) is a vector in V and |w) is a vector in W, then
|w) (v| is the linear operator from V to W, whose action is defined by

() (D)) = lw) (w]) = (W) w)

fcp t e84
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Vector Outer product

Outer product is a useful way of representing linear operators.

Def 3. Suppose |v) is a vector in V and |w) is a vector in W, then
|w) (v| is the linear operator from V to W, whose action is defined by

() (D)) = lw) (w]) = (W) w)

Explanations:
e the result when the operator |w)(v| acts on |v/)
e the result of multiplying |w) by the complex number (v|v/)

@ Indeed, we define the former in terms of the latter.

v T A &
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Vector Outer product

Outer product is a useful way of representing linear operators.

Def 3. Suppose |v) is a vector in V and |w) is a vector in W, then
|w) (v| is the linear operator from V to W, whose action is defined by

() (D)) = lw) (w]) = (W) w)

Explanations:
e the result when the operator |w)(v| acts on |v/)
e the result of multiplying |w) by the complex number (v|v/)
@ Indeed, we define the former in terms of the latter.

@ Let |/) be any orthonormal basis for some V, then ) . |i) (i| =/
(Completeness relation).

v T A &
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Vector Tensor product

Tensor product is a way of putting vector spaces together to form
larger vector spaces, i.e., composite systems. This construction is
crucial to understanding the quantum mechanics of multiparticle

systems.

Def 4. Suppose V and W are Hilbert spaces of dimension m and n
respectively, then V @ W is an mn dimensional Hilbert space, and the
elements are linear combinations of tensor products |v) ® |w).

lcp t#HEAL S
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Vector Tensor product

Tensor product is a way of putting vector spaces together to form
larger vector spaces, i.e., composite systems. This construction is
crucial to understanding the quantum mechanics of multiparticle
systems.

Def 4. Suppose V and W are Hilbert spaces of dimension m and n
respectively, then V @ W is an mn dimensional Hilbert space, and the
elements are linear combinations of tensor products |v) ® |w).

Properties:
° z([v) ®|w)) = 2(|v) @ lw) = ) © (z|w))
o (lm) + 1)) ®|w) = [11) ® |w) + |12) @ |w)
@ |V) ® |w) = |vw) (for short)
o [1))®* (tensored with itself k times)

ICp tHeAE%



Def 5. A linear operator between V and W is defined to be any

function 4:
A(Z ailvy)) = ZaiA<|vz~>)-

lcp t#HEAL S
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Operator

Def 5. A linear operator between V and W is defined to be any

function A4:
A(Zallvl ZaA |Ui)).

i

Eg. Pauli matrices:

I 0 0 1
0'0:]:0 L) JIZUX:XZJ of

(0 = 10
g =0,=Y=| L oy=0, =/~
: i 0 0 -1

lcp t#HEAL S



The outer product representation of Pauli matrices:

av=1-{ | -lool
a=a,=x=| | o |-iilsloy
r=a,=1=( | |-l

oi=0.=2=; " o}l

-

[a—
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Operator

Eigenvectors and Eigenvalues

Def 6. An eigenvector of a linear operator 4 on V is a non-zero
vector |v) such that A|v) = v|v), where v is a complex number
known as the eigenvalue of 4 corresponding to |v).

fcp t e84
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Operator

Eigenvectors and Eigenvalues

Def 6. An eigenvector of a linear operator 4 on V is a non-zero
vector |v) such that A|v) = v|v), where v is a complex number
known as the eigenvalue of 4 corresponding to |v).

(Eigendecomposition of the Pauli matrices) Find the eigenvectors,
eigenvalues, and diagonal representations of the Pauli matrices X, Y
and Z.

lcp t#HEAL S
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Several specific operators

Suppose 4 is any linear operator on a Hilbert space V, then there exists
a unique linear operator A" on V such that for all vectors |v/), |w) € V,

(1), 4lw)) = ('), |w)),

we call this linear operator the adjoint or Hermitian conjugate of the
operator A.

fcp t e84
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Several specific operators

Suppose 4 is any linear operator on a Hilbert space V, then there exists
a unique linear operator A" on V such that for all vectors |v/), |w) € V,

(1), 4lw)) = ('), |w)),

we call this linear operator the adjoint or Hermitian conjugate of the
operator A.

@ Hermitian operator: AT = 4.
.  —k N
@ projector: P =) |i)(i]-

fcp t e84
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Several specific operators

Suppose 4 is any linear operator on a Hilbert space V, then there exists
a unique linear operator A" on V such that for all vectors |v/), |w) € V,

(1), 4lw)) = ('), |w)),
we call this linear operator the adjoint or Hermitian conjugate of the
operator A.
@ Hermitian operator: AT = 4.
@ projector: P = Zf'{:o 1) (il.
@ normal operator: 44T = ATA4.
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Several specific operators

Suppose 4 is any linear operator on a Hilbert space V, then there exists
a unique linear operator A" on V such that for all vectors |v/), |w) € V,

(1), 4lw)) = ('), |w)),

we call this linear operator the adjoint or Hermitian conjugate of the
operator A.

@ Hermitian operator: AT = A4.
.  —k N

@ projector: P =) |i)(i]-

@ normal operator: 44T = ATA4.

Q unitary: UU' = U'U = 1.

fcp t e84
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Several specific operators

Suppose 4 is any linear operator on a Hilbert space V, then there exists
a unique linear operator A" on V such that for all vectors |v/), |w) € V,

(1), 4lw)) = ('), |w)),

we call this linear operator the adjoint or Hermitian conjugate of the
operator A.

@ Hermitian operator: AT = 4.
@ projector: P = Zf:o 1) (il.
@ normal operator: 44T = ATA4.
Q unitary: UU' = U'U = 1.
@ positive operator: (|v),A|v)) > 0,V|v).
positive definite operator: (|v),A|v)) > 0,V|v) # 0.
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Several specific operators

Suppose 4 is any linear operator on a Hilbert space V, then there exists
a unique linear operator A" on V such that for all vectors |v/), |w) € V,

(1), 4lw)) = ('), |w)),

we call this linear operator the adjoint or Hermitian conjugate of the
operator A.

@ Hermitian operator: AT = 4.
@ projector: P = Zf:o 1) (il.
@ normal operator: 44T = ATA4.
Q unitary: UU' = U'U = 1.
@ positive operator: (|v),A|v)) > 0,V|v).
positive definite operator: (|v),A|v)) > 0,V|v) # 0.

O density operator: 7r(4) = 1 and positive operator @* g4



The relationship among different operators is as follows.
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Two important theorems are “the spectral decomposition” and
“simultaneous diagonalization theorem”.

Spectral decomposition: Any normal operator M on a vector space
V is diagonal with respect to some orthonormal basis for V.
Conversely, any diagonalizable operator is normal.

@y t#eaia
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Two important theorems are “the spectral decomposition” and
“simultaneous diagonalization theorem”.

Spectral decomposition: Any normal operator M on a vector space

V is diagonal with respect to some orthonormal basis for V.

Conversely, any diagonalizable operator is normal.

Proof
The converse is a simple exercise, so we prove merely the forward implication,
by induction on the dimension d of V. The case d = 1 is trivial. Let A be an
cigenvalue of M, P the projector onto the  cigenspace, and @ the projector onto
the orthogonal complement. Then M = (P + Q)M(P + Q) = PMP + QMP +
PMQ + QMQ. Obviously PMP = AP. Furthermore, QM P = 0, as M takes
the subspace P into itself. We claim that PMQ = 0 also. To sec this, let [v)
be an clement of the subspace P. Then MM|v) = M'M|v) = AM'|v). Thus,
M|v) has cigenvalue A and thercfore is an clement of the subspace P. It follows
that QM'P = 0. Taking the adjoint of this cquation gives PMQ = 0. Thus
M = PMP+QMQ. Next, we prove that QM @ is normal. To sec this, note that
QM = QM(P+Q) = QMQ, and QM' = QM'(P + Q) = QM!Q. Therefore,
by the normality of M, and the observation that Q* = @,

QMQQM'Q = QMQM'Q (237)
=QMM'Q (2.38)
=QM'MQ (2.39)
=QM'QMQ (2.40)

=QMIQQMQ, (2.41)

so QMQ is normal. By induction, QM is diagonal with respect to some or-
thonormal basis for the pace ), and PM P is already diagonal with respect
to some orthonormal basis for P. It follows that M = PM P + QM(Q is diagonal
with respect to some orthonormal basis for the total vector space. o

Tyt

eaga
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The commutator between two operators 4 and B is defined to be
[4, B] = AB — BA. Similarly, the anti-commutator between two
operators 4 and B is defined to be {4, B} = AB + BA.

Simultaneous diagonalization theorem: Suppose 4 and B are
Hermitian operations. Then [4, B] = 0 if and only if there exists an
orthonormal basis such that both 4 and B are diagonal with respect to
that basis. We say that 4 and B are simultaneously diagonalized in
this case.

fcp t e84
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The commutator between two operators 4 and B is defined to be
[4, B] = AB — BA. Similarly, the anti-commutator between two
operators 4 and B is defined to be {4, B} = AB + BA.

Simultaneous diagonalization theorem: Suppose 4 and B are
Hermitian operations. Then [4, B] = 0 if and only if there exists an
orthonormal basis such that both 4 and B are diagonal with respect to
that basis. We say that 4 and B are simultaneously diagonalized in

this case.

Proof

You can (and should!) easily verify that if A and B are diagonal in the same orthonormal

basis then [A, B] = 0. To show the converse, let |a, j) be an orthonormal basis for the
¢ V., of A with eigenvalue a; the index j is used to label possible degeneracies.

Note that

ABl|a, j) = BAla,j) = aBla, j), @.71)

and therefore Bla, j) is an element of the eigenspace V,. Let P, denote the projector
onto the space V;, and define B, = P, BPF,. It is easy to sce that the restriction of B, to
the space V, is Hermitian on V,, and therefore has a spectral decomposition in terms of
an orthonormal set of eigenvectors which span the space V,. Let’s call these eigenvectors
|a,b, k), where the indices @ and b label the eigenvalues of A and B,, and k is an extra
index to allow for the possibility of a degenerate B,. Note that B|a, b, k) is an element
of V,, so Bla,b, k) = P,Bla,b, k). Moreover we have P,|a,b, k) = |a,b, k), so

Bla,b,k) = P,BP,|a,b, k) = bla, b, k). @.72)

Tt follows that |a, b, k) is an cigenvector of B with cigenvalue b, and therefore |a, b, k) is
an orthonormal set of eigenvectors of both A and B, spanning the entire vector space on
which A and B are defined. That is, A and B are simultancously diagonalizable. [m]

@y t#eaia
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Postulates of quantum mechanics

e origin: The postulates of quantum mechanics were derived after
a long process of trial and (mostly) error.

@ motivation: not always clear

@ expectation: how to apply them, and when

fcp t e84
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Postulates of quantum mechanics

e origin: The postulates of quantum mechanics were derived after
a long process of trial and (mostly) error.
@ motivation: not always clear

@ expectation: how to apply them, and when

Postulate 1: Associated to any isolated physical system is a complex
vector space with inner product (that is, a Hilbert space) known as the
state space of system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.

lcp t#HEAL S
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The simplest quantum mechanical system is the qubit. Suppose |0)
and |1) form an orthonormal basis for this two-dimensional state
space, then an arbitrary state vector can be written

) = al0) + b[1),

where a, b are complex numbers, and |a|? + |b|? = 1.

Icpr#Hiais
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The simplest quantum mechanical system is the qubit. Suppose |0)
and |1) form an orthonormal basis for this two-dimensional state
space, then an arbitrary state vector can be written

) = al0) + b[1),

where a, b are complex numbers, and |a|? + |b|? = 1.

Notations:
e computational basis states: {|0), |1)}
@ superposition: |¢) is a superposition of |0) and |1).
e amplitude: a, b is the amplitude for |0), |1), respectively.
°

probability: |a|? for measuring result is 0, and |b|? for measuring
resultis 1.

fcp t e84



Geometric representation for a qubit is as follows.

[} = a|0) + BI1)

ﬁnomlization

. [ . g
|y = e“’(cosi |0) + &'? sini 1))

@Jp to global phase

6 4
) = coszlﬁ) + e'® 51“5“)

Block sphere representation of a qubit
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Some common used qubit states.

ly) = cos— [0) + e sin— |1)

Axis Z
Ifg@=10,6=0. then 1) = |0)

Ifp=0,6=m, then ) = |1);

Axis X

If(,a=0,s=’2i. then |) = —|0 |1} 2 |4}
3T A

Ifqp—(]e—?.rhen\¢):E|0)——|l) |

Block sphere representation of a qubit

Tpr#eads
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Postulate 2: The evolution of a closed quantum system is described
by a unitary transformation. That is, the state |¢)) of the system at time
t1 is related to the state |¢)) of the system at time 7, by a unitary
operator U which depends only on the times #; and #o,

[¢) = Uly).

@y t#eaia
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Postulate 2: The evolution of a closed quantum system is described
by a unitary transformation. That is, the state |¢)) of the system at time
t1 is related to the state |¢)) of the system at time 7, by a unitary
operator U which depends only on the times #; and #o,

[¢) = Uly).

Notations:
@ closed: This system is not interacting in any way with other
systems.
o Egs.:
bit flip: X
phase flip: Z
Hadamard gate: H

lcp t#HEAL S
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Postulate 2': The time evolution of a state of a closed quantum
system is described by the Schrodinger equation,

In this equation, / is a physical constant known as Plank’s constant
whose value must be experimentally determined. The exact value is
not important to us. In practice, it is common to absorb the factor A
into H, effectively setting i = 1. H is a fixed Hermitian operator
known as the Hamiltonian of the closed system.

Think about the connection between this Hamiltonian and the above
unitary operator.

fcp t e84



Course overview Quantum mechanics under algebra Quantum circuit
000 00000000000000000000e000000 000000000000

Postulate 3: Quantum measurements are described by a collection
{M,,} of measurement operators. These are operators acting on the
state space of the system being measured. The index m refers to the
measurement outcomes that may occur in the experiment. If the state
of the quantum system is |¢)) immediately before the measurement
then the probability that result m occurs is given by

p(m) = (VIM},Myn|),
and the state of the system after the measurement is

M, |)
(| MMy )

The measurement operators satisfy the completeness equations,

> MMy =1
m




@ The measurement of a qubit in the computational basis is
{Mo,Ml}, where MO = |0> <0|, M1 = |1> <1|
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@ The measurement of a qubit in the computational basis is
{Mp, M1}, where My = |0)(0|, M7 = |1)(1].
e Dfferent measurements act on a fixed qubit state.

IlP)—aIO)H?Il)

n A R,

thtm: YEEIE?
|{I|2§|ﬁ|2 |¢)—a|0)+ﬁ|1) Y= (0 _1)
1 |+)+| >+,8|+) ) 0o

,ﬂ B
R I+>+ W2 =)

o @y t#eaia
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Three elementary but important measurement scenarios:

e Distinguishing quantum states

Proof that non-orthogonal states can’t be reliably distinguished

A proof by contradiction shows that no measurement distinguishing the non-
orthogonal states [1) and |+),) is possible. Suppose such a measurement is possible.
If the state |¢1) (|12)) is prepared then the probability of measuring j such that
f(G) = 1(f(j) = 2) must be 1. Defining E; = 3, ¢\ M]-TM]-, these observations
may be written as:

(| Erl) = 15 (o] Exlpa) = 1.

Since Y, E; = I it follows that >, (v|E;|1) = 1, and since (¢1|E;|¢) = 1
we must have (1| Es|11) = 0, and thus v/FEz|th;) = 0. Suppose we decompose
[h2) = afaby) + Ble), where |¢) is orthonormal to |¢1), |af>+ |3 = 1,and |B] < 1
since |t)1) and |1);) are not orthogonal. Then v/F|v,) = Bv/E;|¢), which implies
a contradiction with (2.99), as

(W2 Balun) = 18wl Balp) <16 <1,

where the second last inequality follows from the observation that

(| Bal) <> (ol Eilg) = (ple) = 1.

i
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@ Projective measurements

Projective measurements: A projective measurement is described by an
observable, M, a Hermitian operator on the state space of the system being
observed. The observable has a spectral decomposition,

M= "mP,,

where P, is the projector onto the eigenspace of M with eigenvalue m.

@y t#eaia
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@ POVM measurements

Suppose a measurement described by measurement operators M, is performed upon
a quantum system in the state [¢)). Then the probability of outcome m is given by
p(m) = (| M}, M,,|1). Suppose we define

E, = anMm.

Then from Postulate 3 and elementary linear algebra, E,, is a positive operator such
that 3, E,, = I and p(m) = ()| Ep|¢). Thus the set of operators E,,, are sufficient to
determine the probabilities of the different measurement outcomes. The operators E,,

are known as the POV M elements associated with the measurement. The complete set
{E,.} is known as a POVM.

@y t#eaia
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@ POVM measurements

Suppose a measurement described by measurement operators M, is performed upon
a quantum system in the state [¢)). Then the probability of outcome m is given by
p(m) = (| M}, M,,|1). Suppose we define

E, = anMm.

Then from Postulate 3 and elementary linear algebra, E,, is a positive operator such
that 3, E,, = I and p(m) = ()| Ep|¢). Thus the set of operators E,,, are sufficient to
determine the probabilities of the different measurement outcomes. The operators E,,
are known as the POV M elements associated with the measurement. The complete set
{E,.} is known as a POVM.

Eg: {[¢1) = [0), [¢h2) = |-}
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Postulate 4: The state space of a composite physical system is the
tensor product of the state spaces of the component physical systems.
Moreover, if we have systems numbered 1 through », and system
number i is prepared in the state |¢;), then then joint state of the total
system is |11) ® [1h2) ® - -+ ® |thy).

e entangled state: it cannot be written as a product of states of its
component systems.

@ Bell states:

o) = —((00) +11))

[Wo1) = (1 Z)|[Woo) = 55(]00) — [11))
[W10) = (I ®X)[Woo) = %(|01> + [10))
[T11) = (I ® XZ)| W) = 5(/01) — [10))

%\
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Review the four postulates and try to place them in some kind of
global perspective.

@ Postulate 1 sets the area for quantum mechanics.
@ Postulate 2 tells the dynamics of closed quantum system.

@ Postulate 3 describes how to extract information from quantum
systems.

@ Postulate 4 shows how to combine different quantum systems to
generate a composite one.

fcp t e84



Operations on a qubit must preserve normalization, thus are described
by 2 x 2 unitary matrices.
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Single qubit operations

Operations on a qubit must preserve normalization, thus are described
by 2 x 2 unitary matrices.

Hadamard
Pauli- X

Pauli-Y

Phase

/8

piiy
ptiy
-
Pauli-Z
mEly
miiy
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Rotation operators about the X, y and Z axes are defined as follows.

R.(0) = e~ 0X/2 = (og QI — ¢sin QX = C.OS‘ 2, 7 sn; 3
2 2 —ising  cos 3
' 4 0 cos? —sin?
— —i0Y/2 — v e Vy = 5 >
R,0)=e cos ZI isin 2Y [ sing cos% }
i 0 9 e—-i9/2 0
— —i10Z/2 — O I 4
R.(0)=e cos 2I isin 2Z [ 0 o }
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Rotation operators about the X, y and Z axes are defined as follows.

R,(0) = e X/? = cos =] —isin=X = cos ; , 7 su; >
2 2 —ising  cos 3

i 0 0 _nl
Ry(0) = e "% = cos QI —isin=Y = [ oSy TG }

2 2 sing  cos 3
. 0 0 e—i0/2
— —i10Z/2 — ] —iqin -7 = .
R, (0)=e cos 2I 7 sin 2Z [ 0 ¢i9/2 }
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An arbitrary unitary operator on a single qubit can be written as a
combination of rotations, together with global phase shifts.

(Z — Y decomposition for a single qubit)

Suppose U is a unitary operation on a single qubit. Then there exist
real numbers «, 3, and J such that

U = e“R.(B)R,(7)R:(9).

lcp t#HEAL S
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[e]e]e}

0000000000000 000000O0O00O00000 00@000000000

An arbitrary unitary operator on a single qubit can be written as a
combination of rotations, together with global phase shifts.

(Z — Y decomposition for a single qubit)

Suppose U is a unitary operation on a single qubit. Then there exist
real numbers «, 3, and J such that

U = e“R.(B)R,(7)R:(9).

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators 4, B, C on a single qubit such that ABC = [ and
U = ¢ ®AXBXC, where « is some overall phase factor.

fcp t e84
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Controlled operations
“If 4 is true, then do B”.

e two input qubits, known as the control qubit and target qubit
° [o)]t) = [e)t & c)

1 000
0100
0 0 01
0010
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@ how to implement the controlled-U operation for arbitrary single
qubit U, using only single qubit operations and the CNOT gate.

1 0
0 el
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Measurement

A final element used in quantum circuits.
We shall denote a projective measurement in the computational basis
using a ‘meter’ symbol.

Two principles:

@ Principle of deferred measurement
Measurements can always be moved from an intermediate stage of a quantum
circuit to the end of the circuit; if the measurement results are used at any stage
of the circuit then the classically controlled operations can be replaced by
conditional quantum operations.

@ Principle of implicit measurement
Without loss of generality, any unterminated quantum wires (qubits which are
not measured) at the end of a quantum circuit may be assumed to be measured.

o’
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Quantum teleportation

Quantum teleportation is a technique for moving quantum states
around, even in the absence of a quantum communications channel
linking the sender of the quantum state to the recipient.

Setting:
@ Alice and Bob met long ago and generated an EPR pair, but now
live far apart with one qubit of the EPR pair.

@ Many years later, Bob is in hiding, and Alice’s mission is to
deliver a qubit [¢) to Bob.

@ Alice does not knowdoes not know the state of the qubit, and
moreover can only send classical information to Bob.

Alice can employ quantum teleportation as the way of sending |¢) to

Bob with only a small overhead of classical communication. o
Icpt#easa
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) + oo +
o) [¥1) [2)  [¢3) |tha)
where
40 = Wl
7 [210)(100) +[11)) + 8]1)(100) +[11)]

) = 7 [a10)(100) +[11)) + B]1)(110) +[o1))]

[2) (10) + [1))([00) +[11)) + 53(]0) —|1))(|10)+|01)]

7 oo
300

) (al0) + 811)) + [o1) (al1) + 5/0))
+110) (af0) = BI1)) + [11) (al1) — 510))|
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Principle of deferred measurement

/8 U
1o0) A

@ Bob can “fix up” his state to recover |¢) according to the
measurement result.

o faster than the speed of light?

@ create a copy?

@ EPR pair (entanglement) is a resource.

PR I
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Universal quantum gates

A set of gates is said to be universal for quantum computation, if any
unitary operation may be approximated to arbitrary accuracy by a
quantum circuit involving only those gates.

Three universality constructions:
@ an arbitrary unitary operator may be expressed exactly as a
product of two-level unitary operators.
@ an arbitrary unitary operator may be expressed exactly using
single qubit and CNOT gates.
@ any unitary operation can be approximated to arbitrary accuracy
using Hadamard, phase, CNOT and 7/8 gates.
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Summary

@ Course overview
@ Background
@ Course arrangement

© Quantum mechanics under algebra
@ Vector
@ Operator
@ Postulates of quantum mechanics

© Quantum circuit
@ Single qubit operations
@ Controlled operations
@ Measurement
@ Universal quantum gates
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